Semantic Segmentation

UCLA:https://goo.gl/images/I0VTi2

OUTLINE

Semantic Segmentation

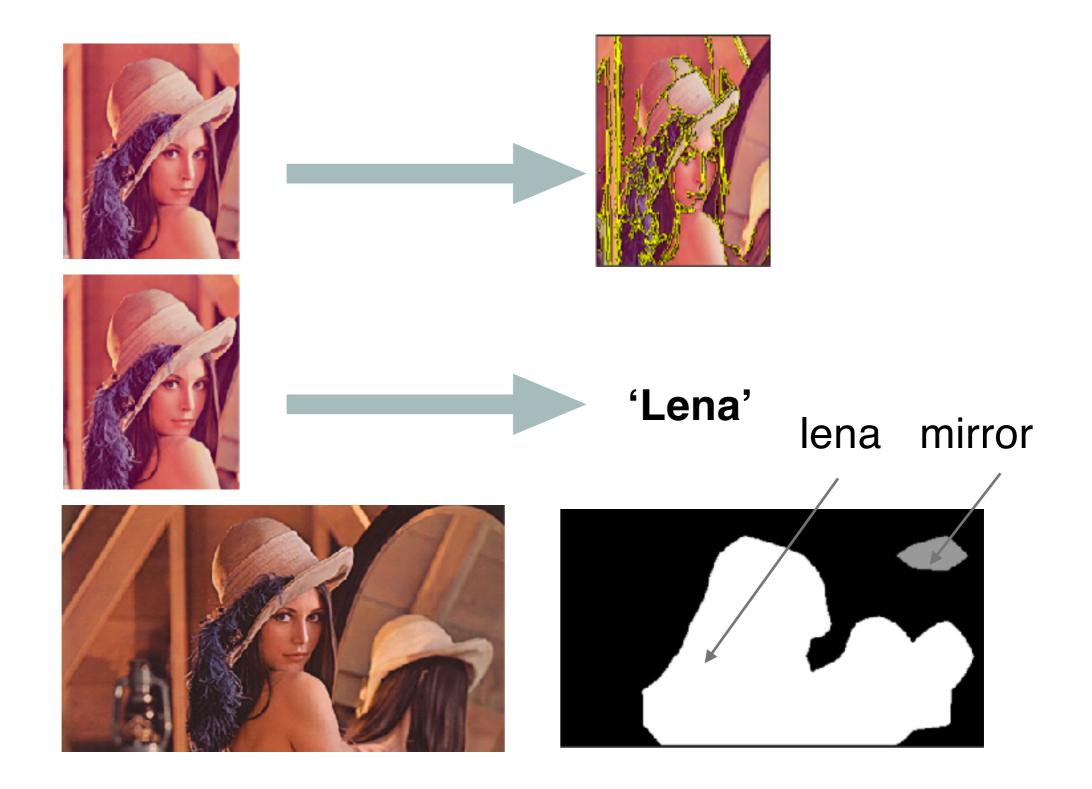
Why?

• Paper to talk about:

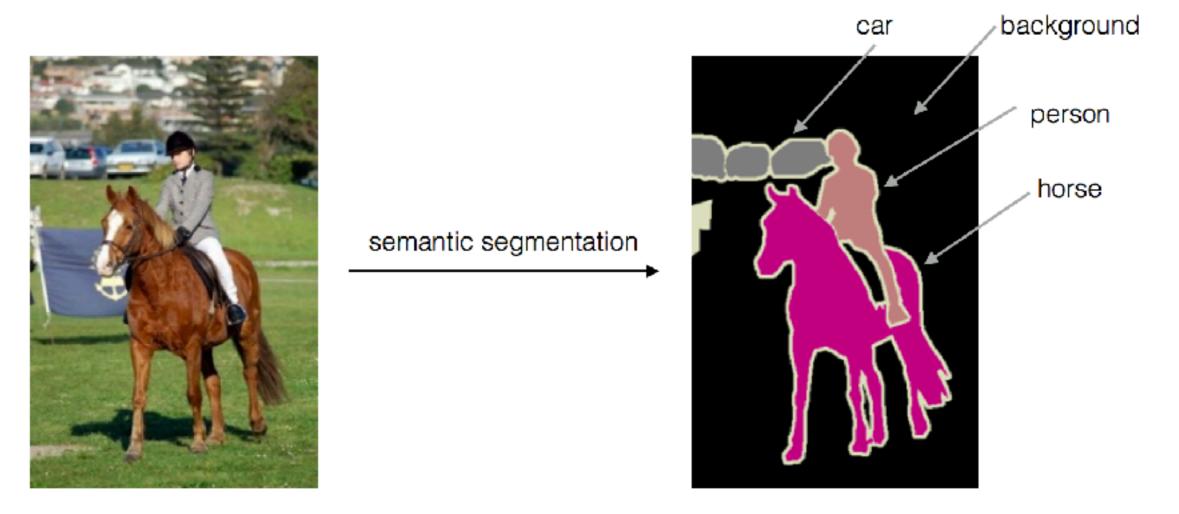
Fully Convolutional Networks for Semantic Segmentation. J. Long, E. Shelhamer, and T. Darrell, CVPR 2015

Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs. L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A. L. Yuille. ICLR 2015

What is Semantic Segmentation



What is Semantic Segmentation



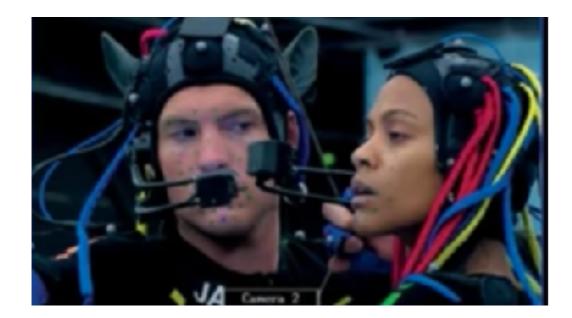
Goal: Partition the image into semantically meaningful parts, and classify each part ——>Patch-wise Recognizing and delineating objects in an image Classifying each pixel in the image ——>Pixel-wise

Why Semantic Segmentation?

 To let robots segment objects so that they can grasp them

Why Semantic Segmentation?

Useful tool for editing images, visual effects

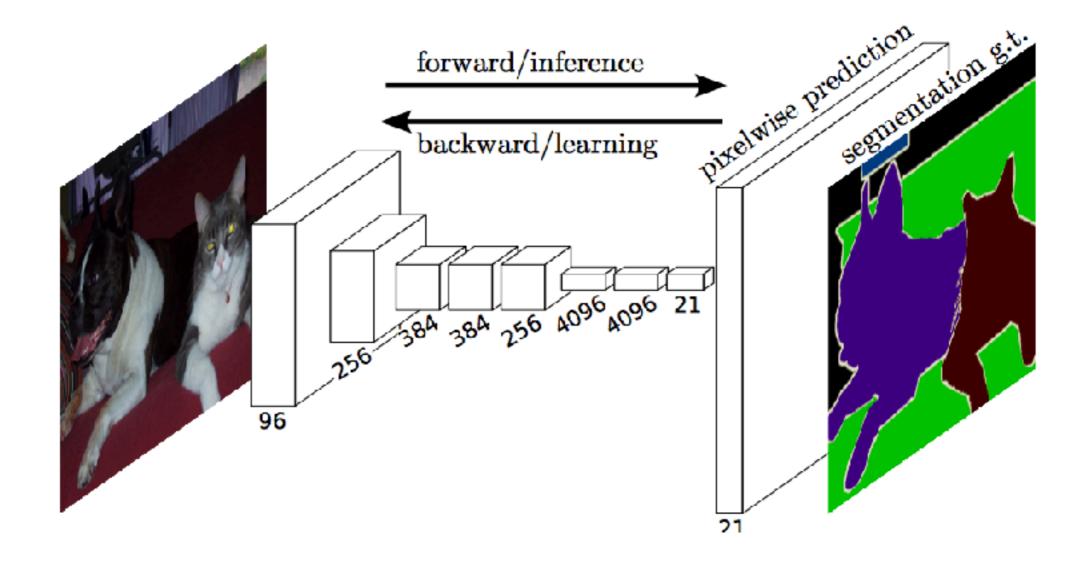


Why Semantic Segmentation?

 Autonomous Driving, to differentiate pedestrian and background

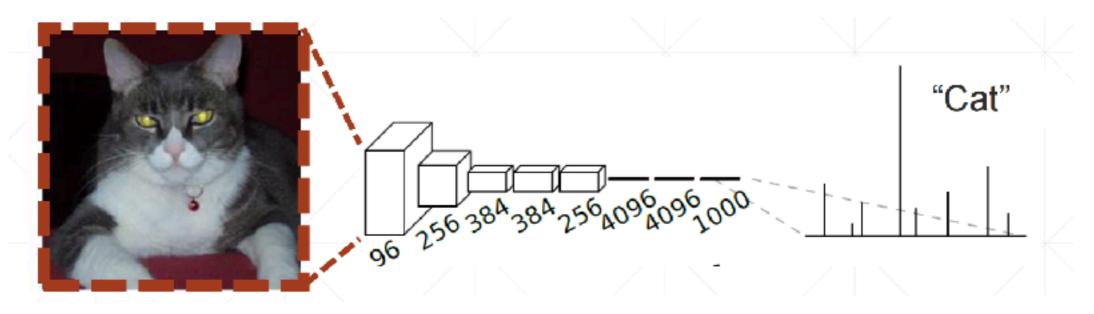
Citydataset

Fully Convolutional Networks for Semantic Segmentation. J. Long, E. Shelhamer, and T. Darrell, CVPR 2015

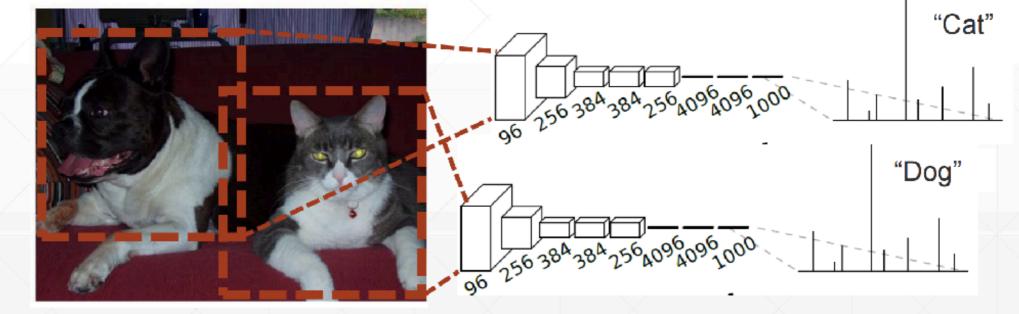


Fully Convolutional Networks for Semantic Segmentation. J. Long, E. Shelhamer, and T. Darrell, CVPR 2015

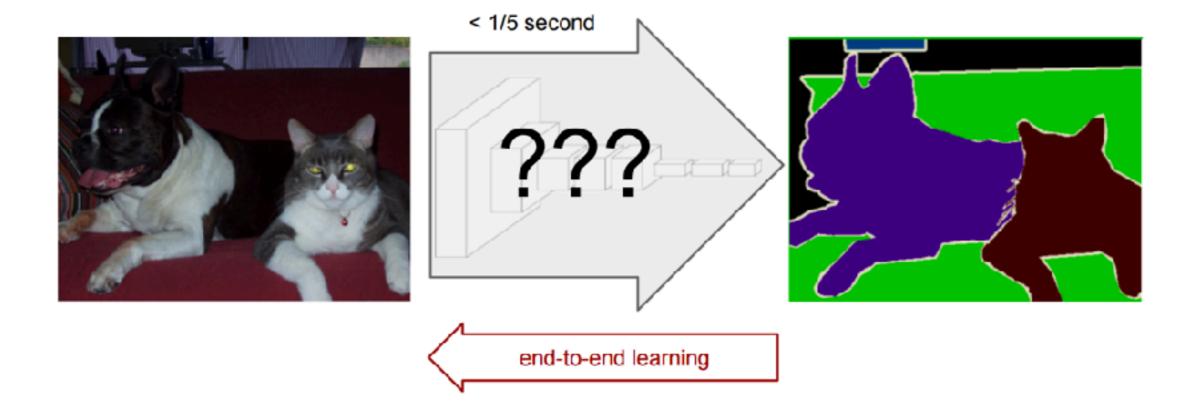
Usual convolutional networks



Fully convolutional networks

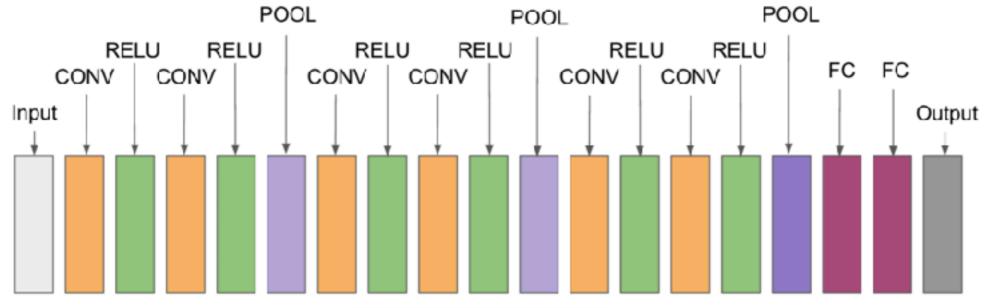


To understand "Fully Convolutional"



To understand "Fully Convolutional"

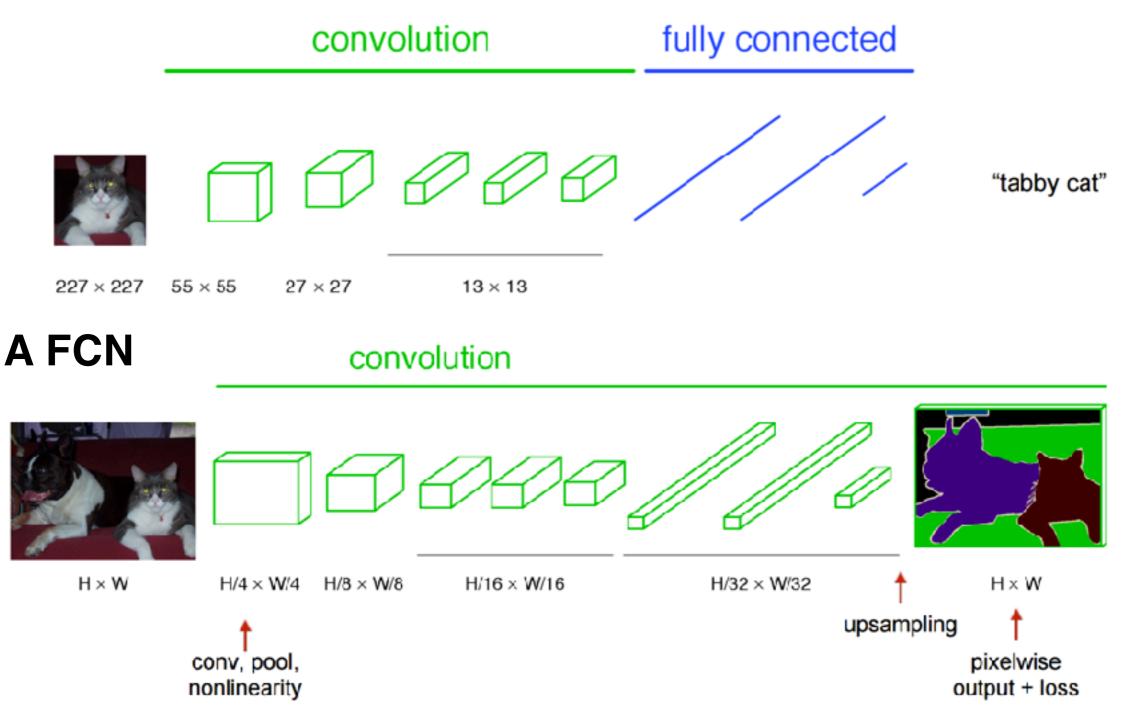
A typical CNN



Example of a CNN Architecture

To understand "Fully Convolutional"

A classification CNN



FCN:

segmentation that combines layers of hierarchy and refines the spatial precision of the output.

Segmentation Architecture

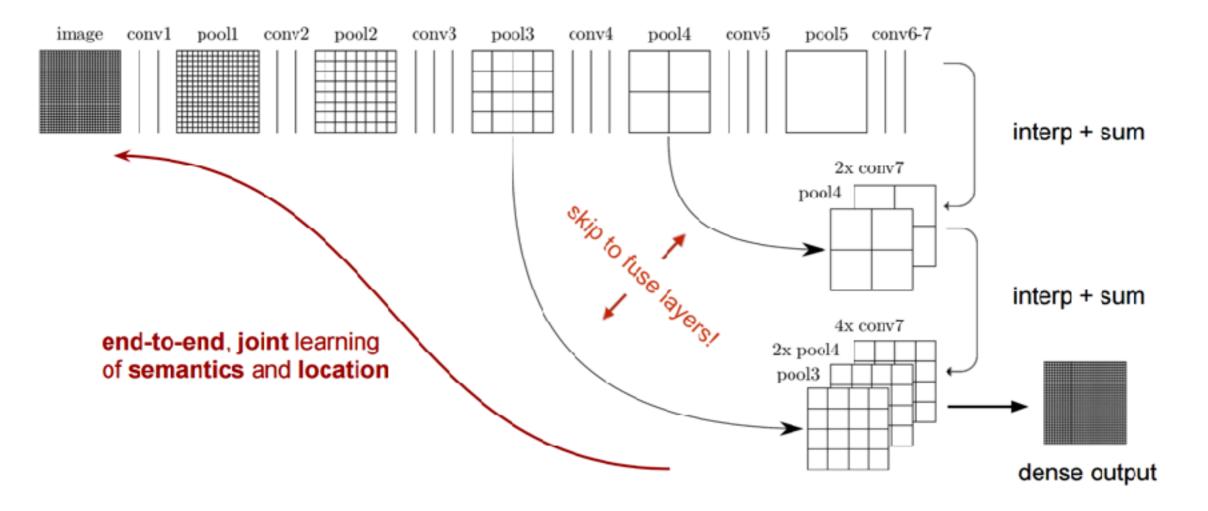
1. ILSVRC classifiers, in-network up sampling and a pixel-wise loss.

2. Add skips between layers to fuse coarse, semantic and local, appearance

3. Dense predictions, pixel-wise prediction

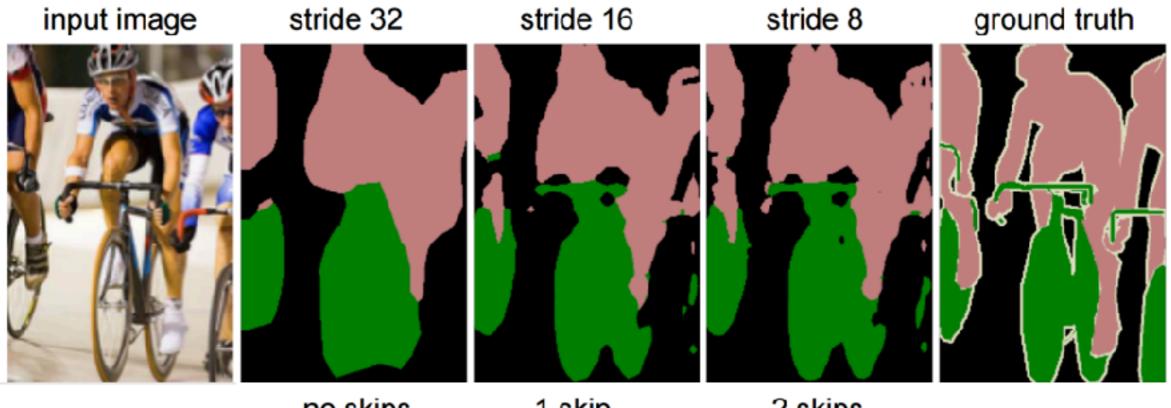
Some Tricks

skip layers



Some Tricks

skip layers refinement



no skips

1 skip

2 skips

Some Tricks

Interpolation

- Up-sampling is performed in-network for end-to-end learning by back-propagation from the pixel wise loss.
- 2. The deconvolution filter in such a layer can be learned.

Some results:

PASCAL VOC	mean IU VOC2011 test	mean IU VOC2012 test	inference time
R-CNN [12]	47.9	-	-
SDS [17]	52.6	51.6	$\sim 50 \ { m s}$
FCN-8s	62.7	62.2	$\sim 175~{ m ms}$

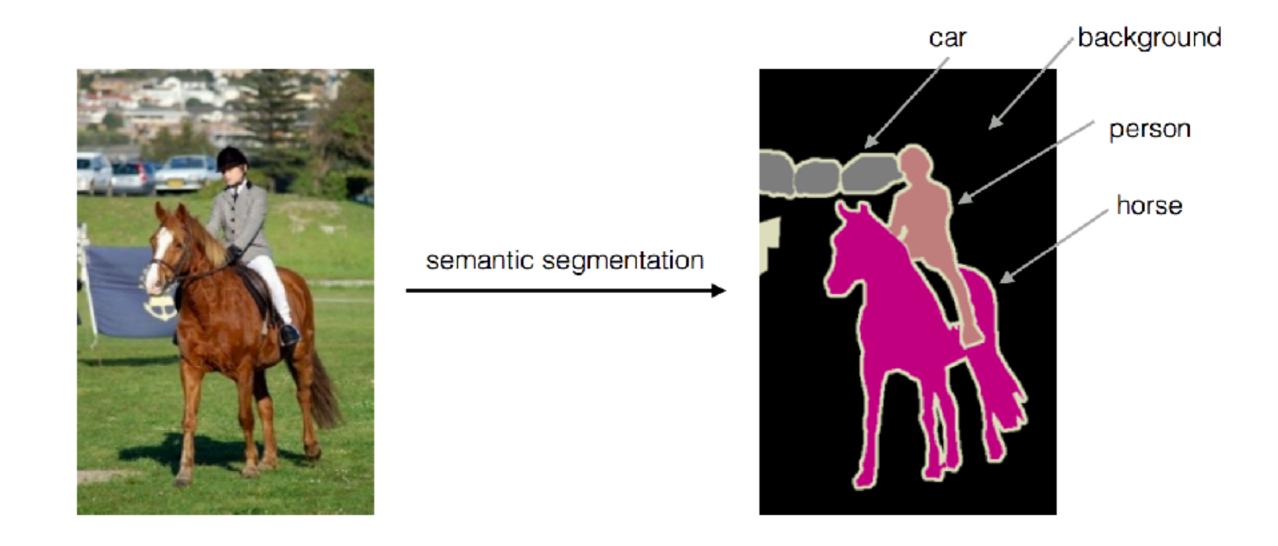
NYUDv2

pixel	mean	mean	f.w.
acc.	acc.	IU	IU
60.3	-	28.6	47.0
60.0	42.2	29.2	43.9
61.5	42.4	30.5	45.5
57.1	35.2	24.2	40.4
64.3	44.9	32.8	48.0
65.4	46.1	34.0	49.5
	acc. 60.3 60.0 61.5 57.1 64.3	acc. acc. 60.3 - 60.0 42.2 61.5 42.4 57.1 35.2 64.3 44.9	acc. acc. IU 60.3 - 28.6 60.0 42.2 29.2 61.5 42.4 30.5 57.1 35.2 24.2 64.3 44.9 32.8

Conclusion

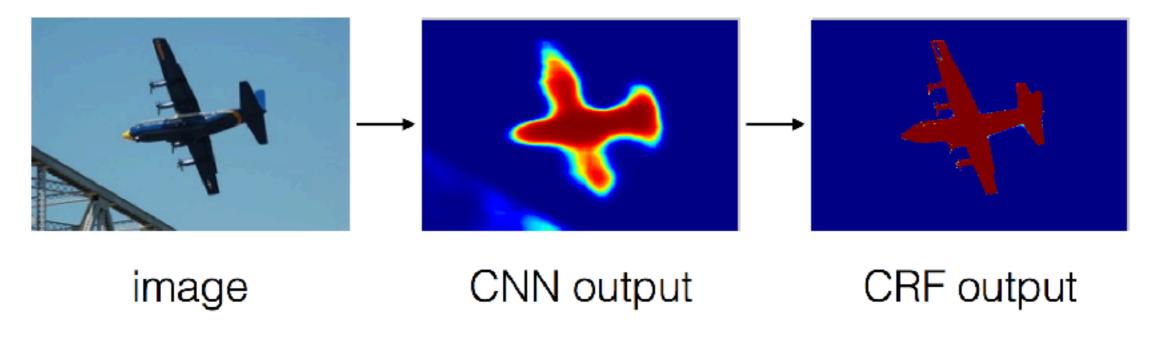
- Fine-tuning from classification to segmentation gives reasonable predictions for each net.
- Learning through up-sampling combined with the skip layer fusion to be more effective and efficient

Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs. L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A. L. Yuille. ICLR 2015



1.Use CNN to generate a rough prediction of segmentation (smooth, blurry heat map)

2.Refine this prediction with a conditional random field (CRF)



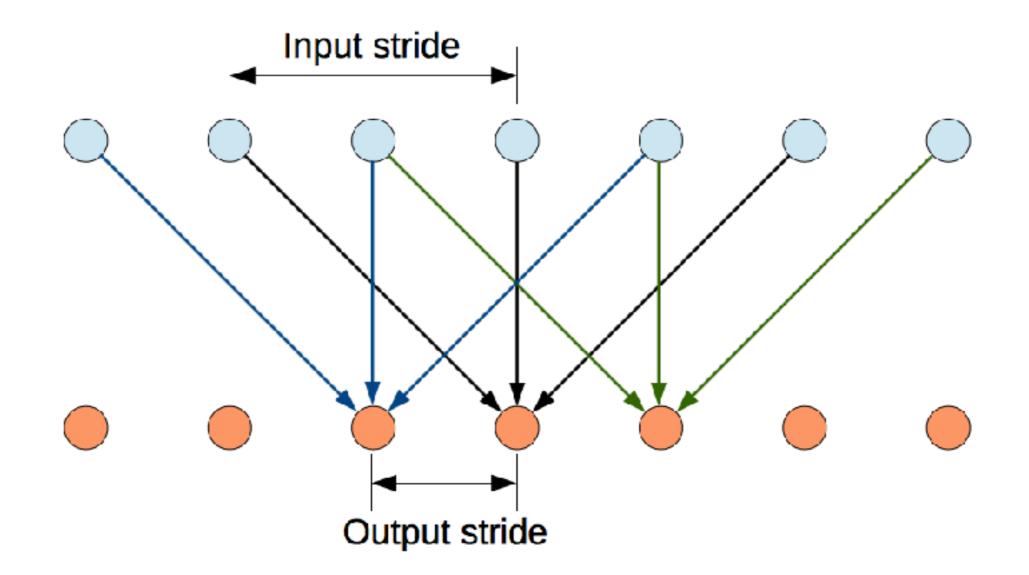
Good for high-level vision tasks like classification, bad for low level tasks like segmentation.

- Problem: subsampling
- Problem: spatial invariance (shared kernel weights)

Solution: fully connected CRF

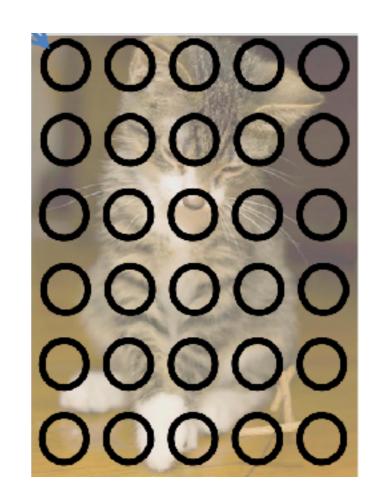
Solution: fully connected CRF

Holes' algorithms



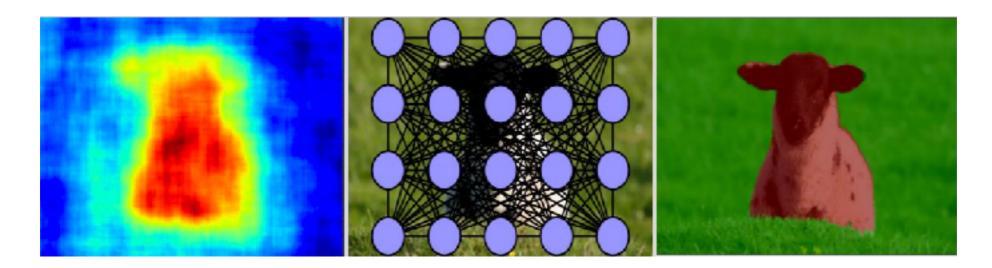
Solution: fully connected CRF

CRF



Randomly choose points and give initial label

CRF Energy Function

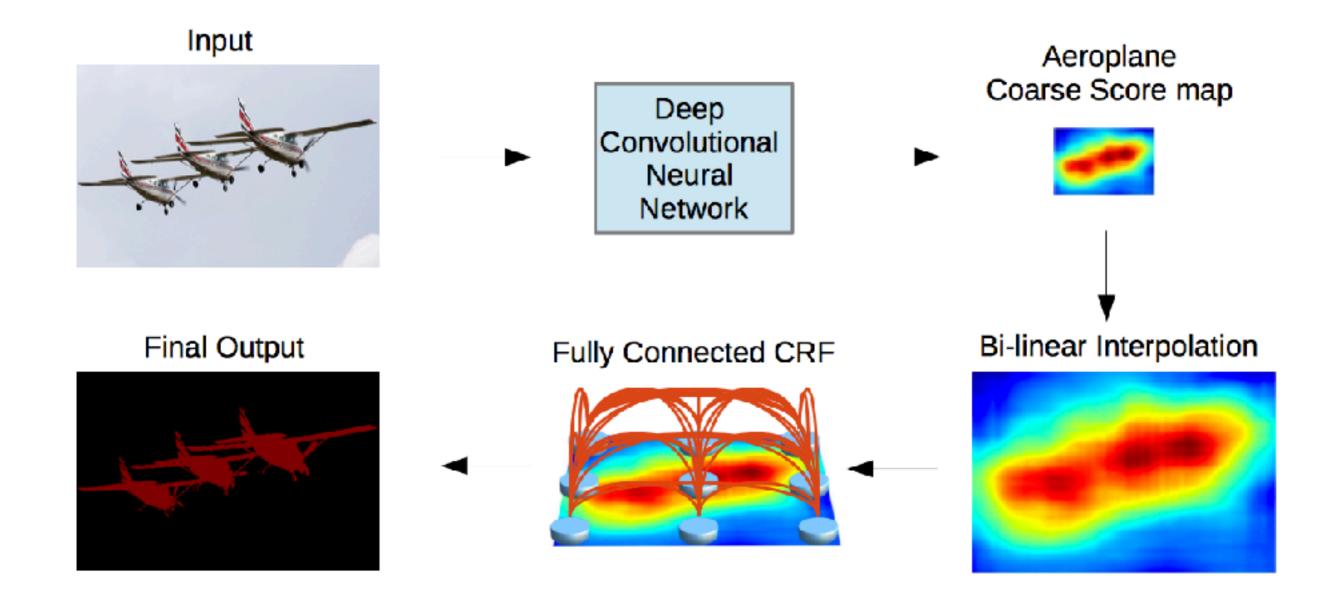


$$E(\boldsymbol{x}) = \sum_{i} \theta_{i}(x_{i}) + \sum_{ij} \theta_{ij}(x_{i}, x_{j})$$

where \boldsymbol{x}_{i} is assignment of pixel *i*

 $\theta_i(x_i) = -\log P(x_i)$ $P(x_i) =$ label assignment probability computed by CNN

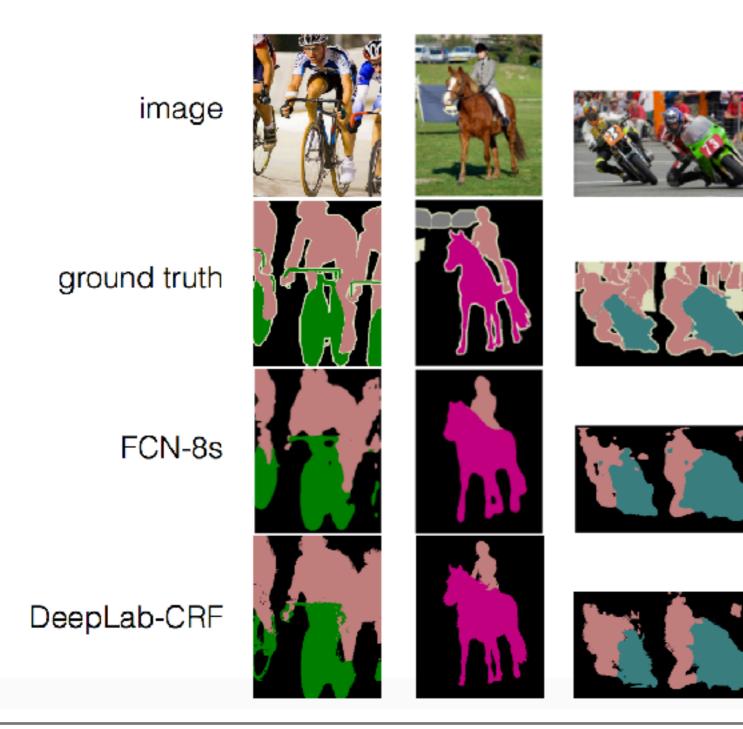
Global Map



Comparison to state-of-the-art

Method	mean IOU (%)
MSRA-CFM	61.8
FCN-8s	62.2
TTI-Zoomout-16	64.4
DeepLab-CRF	66.4
DeepLab-MSc-CRF	67.1
DeepLab-MSc-CRF-LargeFOV	71.6

Comparison to state-of-the-art



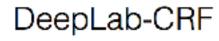
Comparison to state-of-the-art

image

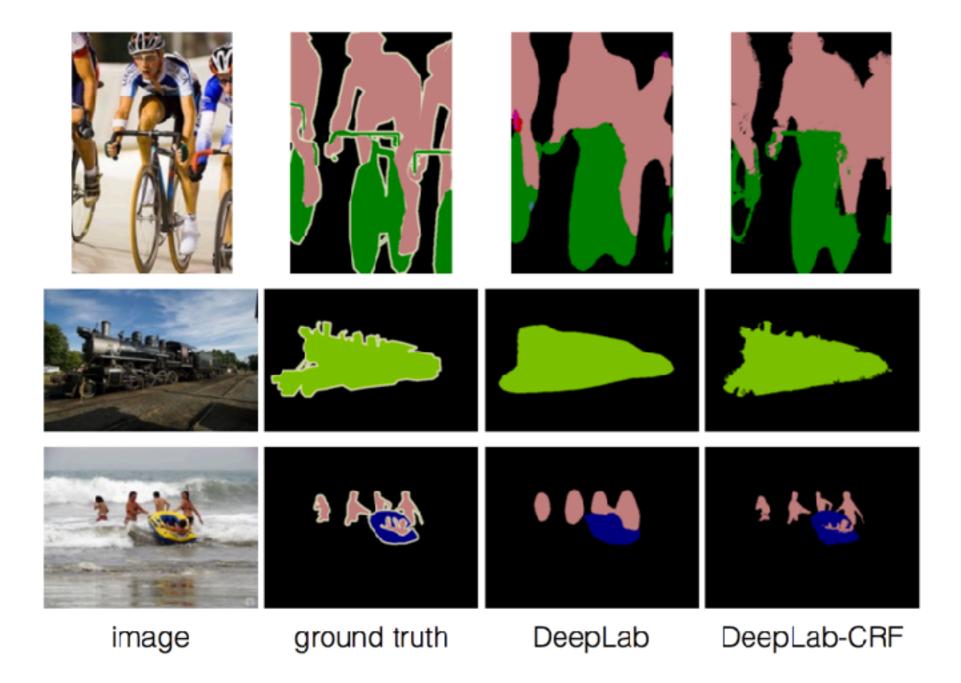
ground truth

S.

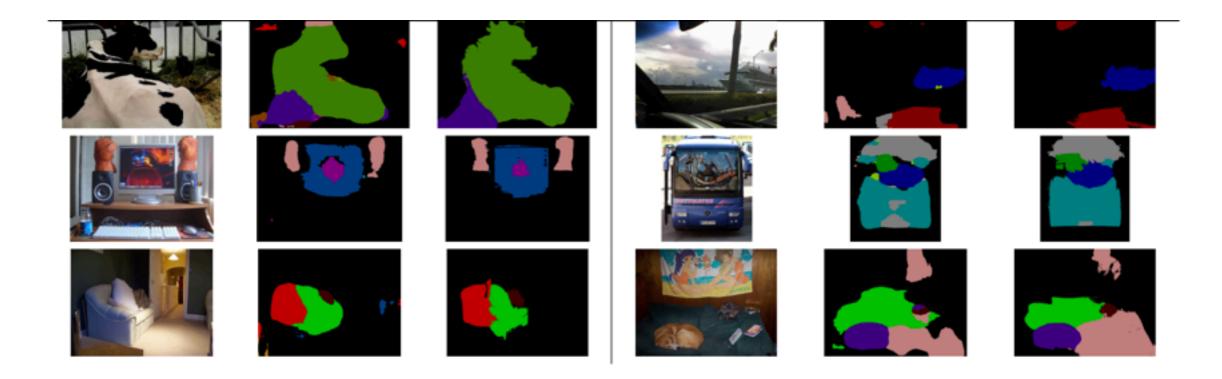
TTI-Zoomout-16



Successful Cases



Failure Cases



- Modify the CNN architecture to become less spatially invariant.
- Use the CNN to compute a rough score map.
- Use a fully connected CRF to sharpen the score

Intel Xeon E5-2670

NVIDIA GPU

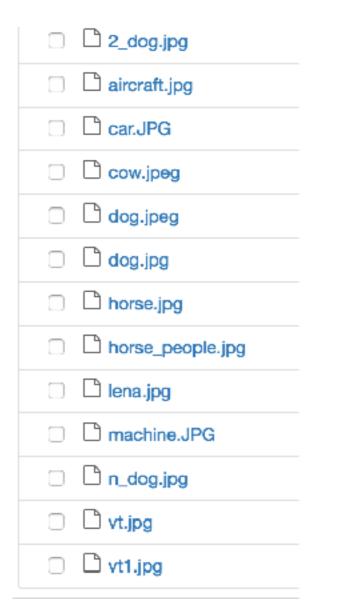
Caffe

VOC_FCN_32s

Python

Cuda8.0

Data_preparation



load image, switch to BGR, subtract mean, and make dims C x H x W for Caffe

26.862607

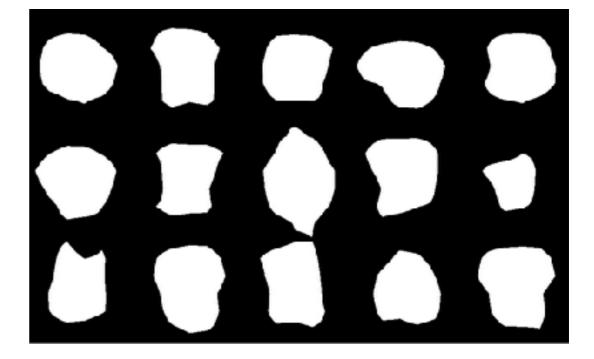
1.238836

39.570141

1.738234

CHICOLATE L

RED SMOCTH DACHSHUND



32.238836

1.238836

39.570141

1.5334832

27.895173

1.239234

Conclusion

1. Their network is very fast even when dealing with high resolution image, and GPU is at least 20 times faster than CPU.

2. The algorithms show good performance towards images when the objects are either well-separated or overlapped with each other

3. The background of image like sky, grass has a big influence on the segmentation.

Better performance could be expected with their FCN_8s, and detailed performance on validation dataset needs to be checked.

Thanks