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Semantic Image Segmentation with Deep Convolutional Nets and Fully 
Connected CRFs. L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A. L. 
Yuille. ICLR 2015

Fully Convolutional Networks for Semantic Segmentation. J. Long, E. 
Shelhamer, and T. Darrell, CVPR 2015

OUTLINE

Paper to talk about: 

Semantic Segmentation 

Why? 
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What is Semantic Segmentation  
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‘Lena’ lena mirror



What is Semantic Segmentation  
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Goal: 
Partition the image into semantically meaningful
parts, and classify each part                   ——>Patch-wise
Recognizing and delineating objects in an image 
Classifying each pixel in the image        ——>Pixel-wise



Why Semantic Segmentation?  
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To let robots segment objects so that they can grasp
them
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Why Semantic Segmentation?  

Useful tool for editing images, visual effects
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Why Semantic Segmentation?  

Autonomous Driving, to differentiate pedestrian 
    and background

Citydataset



Fully Convolutional Networks for Semantic Segmentation. J. Long, E. 
Shelhamer, and T. Darrell, CVPR 2015
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Fully Convolutional Networks for Semantic Segmentation. 
J. Long, E. Shelhamer, and T. Darrell, CVPR 2015

Usual convolutional networks

Fully convolutional networks
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To understand “Fully Convolutional”
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To understand “Fully Convolutional”

A typical CNN
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To understand “Fully Convolutional”
A classification CNN

A FCN
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FCN: 
segmentation that combines layers of hierarchy 
and refines the spatial precision of the output.
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Segmentation Architecture

1. ILSVRC classifiers, in-network up sampling and a pixel-wise loss. 

2. Add skips between layers to fuse coarse, semantic and local, appearance 

3. Dense predictions, pixel-wise prediction
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Some Tricks
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skip layers



Some Tricks
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skip layers refinement



Interpolation

1. Up-sampling is performed in-network for end-to-end learning by  

     back-propagation from the pixel wise loss. 

2.  The deconvolution filter in such a layer can be learned. 
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Some Tricks



Some results:

PASCAL VOC

NYUDv2
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Conclusion

1. Fine-tuning from classification to segmentation gives reasonable 

     predictions for each net.

2.  Learning through up-sampling combined with 

     the skip layer fusion to be more effective and efficient
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Semantic Image Segmentation with Deep Convolutional Nets and Fully 
Connected CRFs. L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A. L. 
Yuille. ICLR 2015
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Paper’s main idea

1.Use CNN to generate a rough prediction of 
segmentation (smooth, blurry heat map)

2.Refine this prediction with a conditional random field 
(CRF)
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Why are CNNs insufficient?

Good for high-level vision tasks like classification, 
bad for low level tasks like segmentation.

• Problem: subsampling
• Problem: spatial invariance (shared kernel    
weights)

Solution: fully connected CRF
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Holes’ algorithms

Solution: fully connected CRF

Solution: fully connected CRF
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Solution: fully connected CRF

CRF

Randomly choose points and give initial label
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CRF Energy Function
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Global Map
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Comparison to state-of-the-art
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Comparison to state-of-the-art
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Comparison to state-of-the-art
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Successful Cases
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Failure Cases
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Conclusion

•  Modify the CNN architecture to become less
   spatially invariant.

• Use the CNN to compute a rough score map.

• Use a fully connected CRF to sharpen the score 
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Experiments

Intel Xeon E5-2670

NVIDIA GPU

Caffe

VOC_FCN_32s

Python

Cuda8.0
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load image, switch to BGR, subtract 
mean, and make dims C x H x W for Caffe

Data_preparation
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Experiment  
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26.862607 1.238836



Experiment  
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39.570141 1.738234



Experiment  
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32.238836 1.238836



Experiment  
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39.570141 1.5334832



Experiment  
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27.895173 1.239234



Conclusion
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1.Their network is very fast even when dealing with high resolution
image, and GPU is at least 20 times faster than CPU. 

2. The algorithms show good performance towards images when 
the objects are either well-separated or overlapped with each other
    3. The background of image like sky, grass has a big influence on 
the segmentation. 

Better performance could be expected with their FCN_8s, and 
detailed performance on validation dataset needs to be checked.
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Thanks


